Subscribe to RSS
DOI: 10.1055/a-0918-8340
Paragangliomas in Carney–Stratakis Syndrome

Abstract
Carney-Stratakis Syndrome (CSS) comprises of paragangliomas (PGLs) and gastrointestinal stromal tumors (GISTs). Several of its features overlap with Carney Triad (CT) - PGLs, GISTs, and pulmonary chondromas. CSS has autosomal dominant inheritance, incomplete penetrance, and greater relative frequency of PGL over GISTs. The PGLs in CSS are multicentric and GISTs are multifocal in all the patients, suggesting an inherited susceptibility and associating the two manifestations. In this review, we highlight the clinical, pathological, and molecular characteristics of CSS, along with its diagnostic and therapeutic implications.
Publication History
Received: 11 November 2018
Accepted: 07 May 2019
Article published online:
07 June 2019
Georg Thieme Verlag
Rüdigerstraße 14,70469 Stuttgart,
Germany
-
References
- 1
Carney JA,
Stratakis CA.
Familial paraganglioma and gastric stromal sarcoma: A new syndrome distinct from the
Carney triad. Am J Med Genet 2002; 108: 132-139
MissingFormLabel
- 2
Martucci VL,
Pacak K.
Pheochromocytoma and paraganglioma: Diagnosis, genetics, management, and treatment.
Curr Probl Cancer 2014; 38: 7-41
MissingFormLabel
- 3
Drovdlic CM,
Myers EN,
Peters JA.
et al. Proportion of heritable paraganglioma cases and associated clinical characteristics.
Laryngoscope 2001; 111: 1822-1827
MissingFormLabel
- 4
Sobol SM,
Dailey JC.
Familial multiple cervical paragangliomas: Report of a Kindred and Review of the Literature.
Otolaryngol Neck Surg 1990; 102: 382-390
MissingFormLabel
- 5
Pasini B,
McWhinney SR,
Bei T.
et al. Clinical and molecular genetics of patients with the Carney–Stratakis syndrome
and germline mutations of the genes coding for the succinate dehydrogenase subunits
SDHB, SDHC and SDHD. Eur J Hum Genet 2008; 16: 79-88
MissingFormLabel
- 6
McWhinney SR,
Pasini B,
Stratakis CA.
et al. Familial gastrointestinal stromal tumors and germ-line mutations. N Engl J
Med 2007; 357: 1054-1056
MissingFormLabel
- 7
Hirota S,
Isozaki K,
Moriyama Y.
et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors.
Science 1998; 279: 577-580
MissingFormLabel
- 8
Huss S,
Künstlinger H,
Wardelmann E.
et al. A subset of gastrointestinal stromal tumors previously regarded as wild-type
tumors carries somatic activating mutations in KIT exon 8 (p.D419del). Mod Pathol
2013; 26: 1004-1012
MissingFormLabel
- 9
Rossi S,
Gasparotto D,
Miceli R.
et al. KIT, PDGFRA, and BRAF mutational spectrum impacts on the natural history of
Imatinib-naive localized GIST. Am J Surg Pathol 2015; 39: 922-930
MissingFormLabel
- 10
Janeway KA,
Kim SY,
Lodish M.
et al. Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking
KIT and PDGFRA mutations. Proc Natl Acad Sci U S A 2011; 108: 314-318
MissingFormLabel
- 11
Killian JK,
Kim SY,
Miettinen M.
et al. Succinate dehydrogenase mutation underlies global epigenomic divergence in
gastrointestinal stromal tumor. Cancer Discov 2013; 3: 648-657
MissingFormLabel
- 12
Boikos SA,
Stratakis CA.
The genetic landscape of gastrointestinal stromal tumor lacking KIT and PDGFRA mutations.
Endocrine 2014; 47: 401-408
MissingFormLabel
- 13
Dahia PLM.
Pheochromocytoma and paraganglioma pathogenesis: Learning from genetic heterogeneity.
Nat Rev Cancer 2014; 14: 108-119
MissingFormLabel
- 14
Fishbein L,
Leshchiner I,
Walter V.
et al. Comprehensive molecular characterization of pheochromocytoma and paraganglioma.
Cancer Cell 2017; 31: 181-193
MissingFormLabel
- 15
Crona J,
Taïeb D,
Pacak K.
New perspectives on pheochromocytoma and paraganglioma: toward a molecular classification.
Endocr Rev 2017; 38: 489-515
MissingFormLabel
- 16
Astuti D,
Latif F,
Dallol A.
et al. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility
to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet 2001; 69:
49-54
MissingFormLabel
- 17
Astuti D,
Douglas F,
Lennard TW.
et al. Germline SDHD mutation in familial phaeochromocytoma. Lancet 2001; 357: 1181-1182
MissingFormLabel
- 18
Baysal BE,
Ferrell RE,
Willett-Brozick JE.
et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma.
Science 2000; 287: 848-851
MissingFormLabel
- 19
Udager AM,
Magers MJ,
Goerke DM.
et al. The utility of SDHB and FH immunohistochemistry in patients evaluated for hereditary
paraganglioma-pheochromocytoma syndromes. Hum Pathol 2018; 71: 47-54
MissingFormLabel
- 20
Clark GR,
Sciacovelli M,
Gaude E.
et al. Germline FH mutations presenting with pheochromocytoma. J Clin Endocrinol Metab
2014; 99: E2046-E2050
MissingFormLabel
- 21
Hoekstra AS,
Bayley J-P.
The role of complex II in disease. Biochim Biophys Acta Bioenerg 2013; 1827: 543-551
MissingFormLabel
- 22
Bardella C,
Pollard PJ,
Tomlinson I.
SDH mutations in cancer. Biochim Biophys Acta Bioenerg 2011; 1807: 1432-1443
MissingFormLabel
- 23
Scheffler IE.
Molecular genetics of succinate:quinone oxidoreductase in eukaryotes. Prog Nucleic
Acid Res Mol Biol 1998; 60: 267-315
MissingFormLabel
- 24
Gill AJ.
Succinate dehydrogenase (SDH) and mitochondrial driven neoplasia. Pathology 2012;
44: 285-292
MissingFormLabel
- 25
Favier J,
Amar L,
Gimenez-Roqueplo A-P.
Paraganglioma and phaeochromocytoma: from genetics to personalized medicine. Nat Rev
Endocrinol 2015; 11: 101-111
MissingFormLabel
- 26
Mason EF,
Hornick JL.
Succinate dehydrogenase deficiency is associated with decreased 5-hydroxymethylcytosine
production in gastrointestinal stromal tumors: implications for mechanisms of tumorigenesis.
Mod Pathol 2013; 26: 1492-1497
MissingFormLabel
- 27
Selak MA,
Armour SM,
MacKenzie ED.
et al.
Succinate links TCA cycle dysfunction to oncogenesis by Inhibiting HIF-α prolyl hydroxylase.
Cancer Cell 2005; 7: 77-85. Available from http://www.ncbi.nlm.nih.gov/pubmed/15652751
MissingFormLabel
- 28
Pantaleo MA,
Nannini M,
Astolfi A.
et al. A Distinct Pediatric-type Gastrointestinal Stromal Tumor in Adults. Am J Surg
Pathol 2011; 35: 1750-1752
MissingFormLabel
- 29
Pantaleo MA,
Astolfi A,
Indio V.
et al. SDHA Loss-of-Function Mutations in KIT-PDGFRA Wild-Type Gastrointestinal Stromal
Tumors Identified by Massively Parallel Sequencing. J Natl Cancer Inst 2011; 103:
983-987
MissingFormLabel
- 30
Wagner AJ,
Remillard SP,
Zhang Y-X.
et al. Loss of expression of SDHA predicts SDHA mutations in gastrointestinal stromal
tumors. Mod Pathol 2013; 26: 289-294
MissingFormLabel
- 31
Gill AJ,
Benn DE,
Chou A.
et al. Immunohistochemistry for SDHB triages genetic testing of SDHB, SDHC, and SDHD
in paraganglioma-pheochromocytoma syndromes. Hum Pathol 2010; 41: 805-814
MissingFormLabel
- 32
van Nederveen FH,
Gaal J,
Favier J.
et al. An immunohistochemical procedure to detect patients with paraganglioma and
phaeochromocytoma with germline SDHB, SDHC, or SDHD gene mutations: a retrospective
and prospective analysis. Lancet Oncol 2009; 10: 764-771
MissingFormLabel
- 33
Barletta JA,
Hornick JL.
Succinate Dehydrogenase-deficient Tumors. Adv Anat Pathol 2012; 19: 193-203
MissingFormLabel
- 34
Dwight T,
Benn DE,
Clarkson A.
et al. Loss of SDHA Expression Identifies SDHA Mutations in Succinate Dehydrogenase–deficient
Gastrointestinal Stromal Tumors. Am J Surg Pathol 2013; 37: 226-233
MissingFormLabel
- 35
Dwight T,
Mann K,
Benn DE.
et al. Familial SDHA mutation associated with pituitary adenoma and pheochromocytoma/paraganglioma.
J Clin Endocrinol Metab 2013; 98: E1103-E1108
MissingFormLabel
- 36
Boikos SA,
Pappo AS,
Killian JK.
et al. Molecular Subtypes of KIT/PDGFRA wild-type gastrointestinal stromal tumors.
JAMA. Oncol 2016; 2: 922
MissingFormLabel
- 37
Weldon CB,
Madenci AL,
Boikos SA.
et al. Surgical management of wild-type gastrointestinal stromal tumors: A Report
from the National Institutes of Health Pediatric and Wildtype GIST Clinic. J Clin
Oncol 2017; 35: 523-528
MissingFormLabel
- 38
Zhang L,
Smyrk TC,
Young WF.
et al. Gastric stromal tumors in carney triad are different clinically, pathologically,
and behaviorally from sporadic gastric gastrointestinal stromal tumors: Findings in
104 cases. Am J Surg Pathol 2010; 34: 53-64
MissingFormLabel
- 39
Miettinen M,
Wang Z-F,
Sarlomo-Rikala M.
et al. Succinate Dehydrogenase-Deficient GISTs. Am J Surg Pathol 2011; 35: 1712-1721
MissingFormLabel
- 40
Wada R,
Arai H,
Kure S.
et al. “Wild type” GIST: Clinicopathological features and clinical practice. Pathol
Int 2016; 66: 431-437
MissingFormLabel
- 41
Miettinen M,
Killian JK,
Wang Z-F.
et al. Immunohistochemical Loss of Succinate Dehydrogenase Subunit A (SDHA) in Gastrointestinal
Stromal Tumors (GISTs) Signals SDHA Germline Mutation. Am J Surg Pathol 2013; 37:
234-240
MissingFormLabel
- 42
Gaal J,
Stratakis CA,
Carney JA.
et al. SDHB immunohistochemistry: A useful tool in the diagnosis of Carney–Stratakis
and Carney triad gastrointestinal stromal tumors. Mod Pathol 2011; 24: 147-1510271
MissingFormLabel
- 43
Mason EF,
Hornick JL.
Conventional risk stratification fails to predict progression of succinate dehydrogenase–deficient
gastrointestinal stromal tumors. Am J Surg Pathol 2016; 40: 1616-1621
MissingFormLabel
- 44
Eisenhofer G,
Lenders JWM,
Timmers H.
et al. Measurements of plasma methoxytyramine, normetanephrine, and metanephrine as
discriminators of different hereditary forms of pheochromocytoma. Clin Chem 2011;
57: 411-420
MissingFormLabel
- 45
Timmers HJLM,
Kozupa A,
Eisenhofer G.
et al. Clinical presentations, biochemical phenotypes, and genotype-phenotype correlations
in patients with succinate dehydrogenase subunit B -associated pheochromocytomas and
paragangliomas. J Clin Endocrinol Metab 2007; 92: 779-786
MissingFormLabel
- 46
Schovanek J,
Martucci V,
Wesley R.
et al. The size of the primary tumor and age at initial diagnosis are independent
predictors of the metastatic behavior and survival of patients with SDHB-related pheochromocytoma
and paraganglioma: a retrospective cohort study. BMC Cancer 2014; 14: 523
MissingFormLabel
- 47
Turkova H,
Prodanov T,
Maly M.
et al. Characteristics and outcomes of metastatic SDHB and Sporadic Pheochromocytoma/Paraganglioma:
A National Institutes of Health study. Endocr Pract 2016; 22: 302-314
MissingFormLabel
- 48
Janssen I,
Chen CC,
Taieb D.
et al. 68Ga-DOTATATE PET/CT in the localization of head and neck paragangliomas compared
with other functional imaging modalities and CT/MRI. J Nucl Med 2016; 57: 186-191
MissingFormLabel
- 49
Naji M,
Zhao C,
Welsh SJ.
et al. 68Ga-DOTA-TATE PET vs. 123I-MIBG in Identifying Malignant Neural Crest Tumours.
Mol Imaging Biol 2011; 13: 769-775
MissingFormLabel
- 50
Gimenez-Roqueplo A-P,
Caumont-Prim A,
Houzard C.
et al. Imaging Work-Up for Screening of Paraganglioma and Pheochromocytoma in SDHx
Mutation Carriers: A Multicenter Prospective Study from the PGL.EVA Investigators.
J Clin Endocrinol Metab 2013; 98: E162-E173
MissingFormLabel
- 51
Elston MS,
Meyer-Rochow GY,
Conaglen HM.
et al. Increased SSTR2A and SSTR3 expression in succinate dehydrogenase–deficient
pheochromocytomas and paragangliomas. Hum Pathol 2015; 46: 390-396
MissingFormLabel
- 52
Amar L,
Servais A,
Gimenez-Roqueplo A-P.
et al. Year of diagnosis, features at presentation, and risk of recurrence in patients
with pheochromocytoma or secreting paraganglioma. J Clin Endocrinol Metab 2005; 90:
2110-2116
MissingFormLabel
- 53
Amar L,
Lussey-Lepoutre C,
Lenders JWM.
et al. Management of endocrine disease: Recurrence or new tumors after complete resection
of pheochromocytomas and paragangliomas: a systematic review and meta-analysis. Eur
J Endocrinol 2016; 175: R135-R145
MissingFormLabel
- 54
Pacak K.
Preoperative Management of the Pheochromocytoma Patient. J Clin Endocrinol Metab 2007;
92: 4069-4079
MissingFormLabel
- 55
Plouin P-F,
Duclos J-M,
Soppelsa F.
et al. Factors Associated with Perioperative Morbidity and Mortality in Patients with
Pheochromocytoma: Analysis of 165 Operations at a Single Center. J Clin Endocrinol
Metab 2001; 86: 1480-1486
MissingFormLabel
- 56
Goldstein RE,
O’Neill JA,
Holcomb GW.
et al.
Clinical experience over 48 years with pheochromocytoma. Ann Surg 1999; 229: 755-764
discussion 764–766
MissingFormLabel
- 57
Krempf M,
Lumbroso J,
Mornex R.
et al. Treatment of malignant pheochromocytoma with [131I]metaiodobenzylguanidine:
A French multicenter study. J Nucl Biol Med 1991; 35: 284-287
MissingFormLabel
- 58
Loh KC,
Fitzgerald PA,
Matthay KK.
et al. The treatment of malignant pheochromocytoma with iodine-131 metaiodobenzylguanidine
(131I-MIBG): A comprehensive review of 116 reported patients. J Endocrinol Invest
1997; 20: 648-658
MissingFormLabel
- 59
Huang H,
Abraham J,
Hung E.
et al. Treatment of malignant pheochromocytoma/paraganglioma with cyclophosphamide,
vincristine, and dacarbazine. Cancer 2008; 113: 2020-2028
MissingFormLabel
- 60
Niemeijer ND,
Alblas G,
van Hulsteijn LT.
et al. Chemotherapy with cyclophosphamide, vincristine and dacarbazine for malignant
paraganglioma and pheochromocytoma: Systematic review and meta-analysis. Clin Endocrinol
(Oxf) 2014; 81: 642-651
MissingFormLabel
- 61
Asai S,
Katabami T,
Tsuiki M.
et al. Controlling tumor progression with cyclophosphamide, vincristine, and dacarbazine
treatment improves survival in patients with metastatic and unresectable malignant
pheochromocytomas/paragangliomas. Horm Cancer 2017; 8: 108-118
MissingFormLabel
- 62
Tanabe A,
Naruse M,
Nomura K.
et al. Combination chemotherapy with cyclophosphamide, vincristine, and dacarbazine
in patients with malignant pheochromocytoma and paraganglioma. Horm Cancer 2013; 4:
103-110
MissingFormLabel
- 63
Hadoux J,
Favier J.
Scoazec J-Yet al. SDHB mutations are associated with response to temozolomide in patients
with metastatic pheochromocytoma or paraganglioma. Int J Cancer 2014; 135: 2711-2720
MissingFormLabel
- 64
Ayala-Ramirez M,
Chougnet CN,
Habra MA.
et al. Treatment with sunitinib for patients with progressive metastatic pheochromocytomas
and sympathetic paragangliomas. J Clin Endocrinol Metab 2012; 97: 4040-4050
MissingFormLabel
- 65
Jasim S,
Suman VJ,
Jimenez C.
et al. Phase II trial of pazopanib in advanced/progressive malignant pheochromocytoma
and paraganglioma. Endocrine 2017; 57: 220-225
MissingFormLabel
- 66
Jasperson KW,
Kohlmann W,
Gammon A.
et al. Role of rapid sequence whole-body MRI screening in SDH-associated hereditary
paraganglioma families. Fam Cancer 2014; 13: 257-265
MissingFormLabel
- 67
Aufforth RD,
Ramakant P,
Sadowski SM.
et al. Pheochromocytoma Screening Initiation and Frequency in von Hippel-Lindau Syndrome.
J Clin Endocrinol Metab 2015; 100: 4498-4504
MissingFormLabel
- 68
Williamson SR,
Eble JN,
Amin MB.
et al. Succinate dehydrogenase-deficient renal cell carcinoma: Detailed characterization
of 11 tumors defining a unique subtype of renal cell carcinoma. Mod Pathol 2015; 28:
80-94
MissingFormLabel
- 69
Gupta S,
Zhang J,
Milosevic D.
et al. Primary Renal Paragangliomas and Renal Neoplasia Associated with Pheochromocytoma/Paraganglioma:
Analysis of von Hippel–Lindau (VHL), Succinate Dehydrogenase (SDHX) and Transmembrane
Protein 127 (TMEM127). Endocr Pathol 2017; 28: 253-268
MissingFormLabel
- 70
Mei L,
Smith SC,
Faber AC.
et al. Gastrointestinal stromal tumors: The GIST of precision medicine. trends. Cancer
2018; 4: 74-91
MissingFormLabel
- 71
Zhuang Z,
Yang C,
Lorenzo F.
et al. Somatic HIF2A gain-of-function mutations in paraganglioma with polycythemia.
N Engl J Med 2012; 367: 922-930
MissingFormLabel